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Abstract The stress-analysis method presented in this paper is based on the extension of a successful,
two-dimensional generalised laminate theory towards consideration of thermo-mechanical deformation
effects. Like its conventional counterparts, that generalised equivalent-single-layer (ESL) laminate model
makes use of a fixed and small number of unknowns. Its success is, however, based on the incorporation
into its approximate, thermo-mechanical displacement field of the exact elasticity distributions available
for corresponding simply supported structural components. With this incorporation, the ESL laminate
model acquires benefits of a corresponding layer-wise theory. Most importantly, the proposed ESL theory
and three-dimensional thermo-elasticity yield identical stress distributions for simply supported laminates.
For other sets of edge boundary conditions, solutions and therefore detailed response characteristics that
are based on such an ESL theory are accurate away of the laminate edges. If necessary, accuracy of detailed
response characteristics can be further improved on a predictor–corrector basis.

Keywords Composite laminates · Mathematical modelling · Stress analysis · Thermo-elasticity

1 Introduction

The approximately two-hundred-years-long history of the theory of linear elasticity, along with associated
research areas and topics, contains paradoxes, points of controversy as well as strong relevant debates,
with the latter having contributed substantially to the progress and advance of the subject. The bending
problem of a thin elastic rectangular plate made of isotropic material, having its edges clamped and being
subjected to uniform pressure is mentioned, in particular, as the first among several examples that could
fit the purposes of the present paper. In mathematical terms, that boundary-value problem is described as
follows:
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where ∇2 = ∂2/∂x2 + ∂2/∂y2 is the form of the Laplace operator in Cartesian co-ordinates x and y,
the constants Lx and Ly represent the length and the width of the plate, respectively, and hence define
the domain of the problem, D is the flexural rigidity of the plate and q represents the applied pressure.
Extensive accounts of solutions relevant to this problem, proposed, attempted and achieved by many
well-known scientists, mathematicians and engineers, are presented in [1]. Reference [1] also comments
on the reasons that this problem has attracted the interest of both mathematicians and engineers; it gives
detailed information and invaluable further sources of the fascinating (as refers to it) long history of that
classical problem and, in this context, it even mentions of the manner that the (now famous) relevant study
by Ritz [2] was initially misplaced or mistreated. Moreover, a comment placed early in the Introduction
of [1], according to which “the mathematician is interested in the problem for its own sake and not
for its practical application, whereas the engineer is interested in the practical problem, and he uses his
mathematics merely as a tool”, can be generalised and furnish to reflect the fact that theoretical and applied
sciences complement and assist one another.

In this context it is instructive to note that (1) represents only one of the many boundary-value problems
stemming from applications of the classical plate theory (CPT); namely, a two-dimensional mathematical
model which, although substantially inferior when compared with the three-dimensional theory of linear
isotropic elasticity counterpart, was until recently, and perhaps still is, a successful principal design tool
in engineering and the applied sciences. Associated with Kirchhoff’s name [3], the static version of the
CPT and the order (four) of the resulting partial differential equation (PDE) necessitates application of
two boundary conditions along each edge of the plate; the pair of boundary conditions appearing in (1) is
only a representative sample of other possible pairs of edge boundary conditions. As Reissner described
[4], “What makes Kirchhoff’s result concerning the boundary conditions remarkable is that “physical
intuition” leads one to expect three natural conditions, such as the three conditions of prescribed edge-
force intensity, bending-moment intensity, and twisting-moment intensity, as had earlier been demanded
by no lesser an authority than the great Poisson”. As it is further detailed in [4], Reissner remembered
“clearly that he was much intrigued by this boundary-condition paradox, while learning about plates in
a course on Statik der Baukonstruktionen which was at that time offered by his father at the Technische
Hochschule Berlin. It was clear that, given the reality of three edge conditions, a sixth-order rather than
a fourth-order differential equation ought to be in charge of the problem”. Becoming later the first who
eventually obtained the anticipated sixth-order differential equation, about a decade after his graduation
from Technische Hochschule Berlin, Reissner added in 1985 [4]: “Today in retrospect, one feels that the
mere raising of the question should have led to its straightforward resolution. In contrast to this, the
question had remained unresolved for more than 80 years, and would remain so for 10 more years. Once
an answer had been found of how a rational sixth-order differential equation formulation would come out
[5,6], somewhat less simply than indicated above, it also became apparent why the “paradox” arose in the
first place, and alternative ways of resolving it were developed in short order”.

The plate theory presented in [5,6] and those that followed it have offered substantial improvements
of the CPT considerations, at both theoretical and practical level, and have therefore extended considera-
bly the range of applicability of two-dimensional plate modelling. However, by nature, two-dimensional
modelling of thin-walled structures can never become as accurate as three-dimensional theory of linear
elasticity. As already mentioned, the latter provides the basic mathematical models and tools for theo-
retical study and prediction of the behaviour of common structural components met in engineering and
applied sciences for approximately two hundred years. Although linear in form, the resulting complicated,
high-order PDEs were initially solved for relatively simple problems only. For many problems that the
theory is invited to model advanced practical situations, as happens in modern mechanics of composite and
fibre-reinforced structural components, those PDEs had to wait for much more than a century, until the
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evolution of high-speed computational means made more widely understood the theoretical and practical
benefits stemming from their solution. Nevertheless, it is still the minimisation of energy functionals (e.g.
the Ritz method), rather than methods directly applied on equivalent three-dimensional elasticity PDEs
which is regarded as computationally feasible, almost always provide the best possible and most accurate
relevant information sought.

Although not much is now considered as computationally impossible in structural analysis, application
of energy-minimisation approaches is still less economical if compared with the results of possible analy-
tical methods that might be applied directly to equivalent equilibrium PDEs, particularly when someone
deals with the mechanics of multilayered, highly anisotropic thin-walled components on the basis of three-
dimensional elasticity considerations. The through-thickness continuity constraints that have to be applied
to both displacements and inter-laminar stresses may be referred to as an adequate justification of the
latter argument. Three-dimensional elasticity PDEs may, however, be solved exactly only in particular
cases and mainly for problems referring to structural components having all their edges simply supported.
Even in such cases though, the possible appearance of variable coefficients, which are mainly but not exclu-
sively associated with consideration of curvature effects (shell-type structures), may impose considerable
additional difficulty when attempting to find the solution of the involved PDEs.

The latter arguments justify completely the enormous amount of effort, work and time spent by many
bright researchers who, starting with the pre-elasticity era searches of the Bernoullis and Euler, keep
developing and using relevant one- and two-dimensional mathematical models that predict as successfully
as possible the behaviour of thin-walled, three-dimensional structural components. As already detailed,
such lower-dimensional modelling has, of course, limitations and has therefore both received and survived
criticisms from several scholars, some of whom have also contributed considerably to its development
(e.g. [7,8]). The relatively recent interest in composite, fibre-reinforced materials and “smart” structural
components gave a boost to the subject which, departing from its early developments (e.g. [3–6]) and
combined with the parallel evolution of computational means, has grown considerably over the last 35 years,
and will continue to do so (for more recent developments, see for instance [9,10]). In this connection,
some advanced kind of elastic-plate modelling proposed in [9,10] has produced relevant, two-dimensional
mathematical models that predict displacement, strain and stress distributions identical to those predicted
by the three-dimensional theory of elasticity for elastic plates having simply supported edges. This is
a remarkable output for a two-dimensional mathematical model and can evidently serve as a point of
reference towards future developments in the subject. Moreover, it gives rise to a new accurate stress-
analysis method, applications of which are so far confined within the relatively simple geometrical features
of flat plates and plate-like composite laminates (e.g. [10–16]).

The possibility for further expansion of the method towards accurate stress analysis of relevant curved
structural components and component assemblies is, however, also anticipated in [10]. There, the manner
is further detailed for the construction of relatively simple computer subroutines containing solutions
of three-dimensional elasticity PDEs that represent appropriate cylindrical-shell-components modelling.
Although not detailed in [10], a subsequent merger of such type of three-dimensional elasticity solutions
with the appropriate two-dimensional generalised cylindrical shell model would serve directly towards the
new method’s expansion within the bounds of purely mechanical response of curved structural components.
Expansion of the method’s applicability to areas and disciplines of associated research interest is, however,
also desirable and possible. For instance, the current interest in developing so-called smart materials and
structures, as well as the associated interest in studying the behaviour and exploiting the properties of
relevant structural components, directs possible developments and the method’s expansion towards the
fields of thermo-elasticity and piezoelectricity. Under these considerations, this paper is considered as an
initial step towards the extension of the outlined new method in the field of thermo-elastic stress analysis
of structural components and, as such, it essentially follows the pattern employed in [10] for corresponding
structural components that exhibit purely mechanical response.
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Fig. 1 Laminated
cylinder geometry and
coordinate system
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It should therefore be emphasised that this paper is inevitably briefer than [10]. Where appropriate, it
accordingly outlines possible future developments by citing relevant references than through detailed and
full expansion of already existing relevant work. In some detail though, the proposed accurate thermo-
elasticity stress-analysis method will still be based on a generalised equivalent-single-layer (ESL) laminate
model that makes use of a fixed and small number of unknowns (degrees of freedom). The method’s
success emerges again from the appropriate incorporation of the displacement field of exact thermo-
elasticity distributions available for corresponding simply supported structural components (Sect. 2) into
the approximate displacement field of an ESL laminate model (Sects. 3–5). With this incorporation, the
ESL laminate model acquires benefits of a corresponding layer-wise theory. As already mentioned, the
most important feature of this merger is that the proposed ESL theory and three-dimensional thermo-
elasticity yield identical stress distributions for simply supported laminates. For other sets of edge boundary
conditions, solutions and therefore detailed response characteristics predicted through the solution of the
governing PDEs of such an ESL theory are accurate everywhere apart from a neighbourhood of the
laminate edges (Sect. 6). If necessary, the accuracy of detailed response characteristics can further be
improved with the use of a predictor–corrector approach.

2 Three-dimensional thermo-elasticity solutions for laminated composite plates and cylinders

Consider a circular cylindrical panel with constant thickness h and axial length Lx (Fig. 1). The radius
and the circumferential length of its middle surface are denoted by R and Ls, respectively, so φ = Ls/R
represents its shallowness angle; upon choosing φ = 0 or φ = 2π , one obtains the geometry of the flat plate
or completely circular cylinder, respectively, as particular cases. The axial, circumferential and normal-
to the middle-surface coordinate-length parameters are denoted by x, s and z, respectively. For relative
simplicity, the cylinder is assumed to be made of a linearly elastic orthotropic material whose principle
axes of orthotropy coincide with the axes of the curvilinear coordinate system employed.

Any type of thermo-elasticity theory can be considered and would be equally good in serving the
general purposes of this section, including the conventional thermo-elasticity theory [17] as well as re-
levant theories with second sound (e.g. [18]). For the purposes of the present section, the generalised
thermo-elasticity theory with second sound due to Kaliski [19], Dhaliwal and Sherief [20] and Li [21] is
employed as a reference theory. Relevant results obtained by using conventional thermo-elasticity theory
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can subsequently be obtained as a particular case; these will be employed later in an example applica-
tion. Under these considerations and upon neglecting, for simplicity, the effects of heat sources, the stress
equations of motion may be brought into the following form:

σxx,x + τxs,s + τxz,z + R−1
(

1 + z
R

)−1
τxz = ρU,tt,
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where U, V and W are the displacement components along the axial, circumferential and radial directi-
ons, respectively, and a comma denotes partial differentiation with respect to the indicated variable(s).
Moreover, T0 and T are the initial temperature and the absolute temperature, respectively, and t denotes
time. Finally, ρ is the material density, ki and bi are the non-zero components of thermal conductivity
and thermo-elasticity tensor, respectively, c denotes the specific heat per unit mass and τ0 is the thermal
relaxation parameter.

For infinitesimal deformations, the Duhamel–Neumann thermo-elasticity constitutive equations can be
expressed as follows:
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where Cij (i, j = 1, 2, . . . , 6) are the elastic moduli of an orthotropic material and αi (i = x, y, z) are the
coefficients of linear thermal expansion. The following kinematic relations,

εx = U,x, εs = V,s + R−1
(

1 + z
R

)−1
W, εz = W,z,

γsz = W,s + V,z − R−1
(

1 + z
R

)−1
V, γxz = W,x + U,z, γxs = V,x + U,s, (4)

complement the constitutive equations (3) and reveal that, due to the appearance of terms involving
(1 + z/R)−1, their introduction into (2) yields a system of four, Navier-type, simultaneous PDEs with
variable coefficients. The latter are differential equations obtained in terms of the unknown displacement
components and temperature; their explicit forms can be found in [22].

For cylindrical panels having all four of their edges simply supported, the obtained set of simultaneous
PDEs admits a separable solution of the form,
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)
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Here, m and n are integers representing axial and circumferential wave parameters, respectively, while

1, 
2, � and  are unknown functions of the transverse co-ordinate parameter, z. In the case of free
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vibrations, the function �(t) is chosen to be periodic in time while in static problems it is replaced by 1. In
either case, introduction of (4) into the aforementioned “Navier-type” PDEs [22] eliminates dependency
on the in-plane co-ordinates, x and s. A system of four simultaneous ordinary differential equations (ODEs)
is thus obtained. It possesses variable coefficients and its solution yields the form of the four unknown
functions 
1, 
2, � and . These functions represent the exact through-thickness distribution of the
displacement components and the temperature, while corresponding, exact through-thickness strain and
stress distributions are obtained upon subsequent use of Eqs. (4) and (3), respectively.

It should be noted at this point that, in the particular case of flat plate-like structural components
(R = ∞) the latter set of ODEs possesses constant coefficients and can therefore be solved exactly with
standard methods of differential calculus. It follows that the functions 
1, 
2, � and  can be finally
expressed in terms of elementary mathematical functions. They can therefore be converted easily into
the form of computer subroutines and stored into a computer’s memory for later possible use. As will be
seen in the subsequent sections devoted to a particular flat-plate application, this kind of computerised
implementation of 
1, 
2, � and  is of profound importance for their merger with a generalised two-
dimensional (2D) plate theory and, hence, for the efficient computational implementation of the proposed
accurate stress-analysis method.

In the case of shell-type structural components, the difficulty of the variable coefficients appearing in
(2), (4) and, hence, in the corresponding Navier-type differential equations is confronted, with relative
ease, by means of the successive approximation method introduced in [23] and used later in a series of
relevant publications (e.g. [24–29]). Notably, that successive approximation method has shown rigorously
[30] to be equivalent to any exact analytical method available for the solution of relevant ODEs with
variable coefficients. In the particular case of stationary thermo-elastic analysis of cylinders and cylindrical
panels, detailed accounts of its efficiency, as well as easy implementation in terms of 6 × 6 matrix operati-
ons, are given in [28]. In the latter case, the heat-conduction equation (2.d) becomes uncoupled from the
static equilibrium version of Eqs. (2.a-c) and the method’s computer implementation resembles its purely
mechanical counterpart (e.g. [10]). However, regardless of the type of the particular thermo-elastic pro-
blem considered, the computer implementation of the functions
1,
2,� andwill be again of profound
importance for their merger with some appropriate generalised 2D shell theory (e.g. [31,32]). It is empha-
sised that, in the case of composite laminates, each individual layer is treated as a materially homogeneous
structural component and the final, composite form of
1,
2,� and is still obtained by using 6×6 matrix
operations, upon requiring continuity of displacements and inter-laminar stresses at the laminate material
interfaces (e.g. [28]).

3 Outline of a 2D generalised six-degree-of-freedom plate theory for use in stationary thermo-elastic
analysis

In stationary thermo-elastic applications, the heat-conduction equation is uncoupled from the static
remaining equilibrium equations and can therefore be solved independently of the latter. It follows that
the principal governing equations of the 2D generalised, six-degree-of-freedom plate theory (G6DOFPT)
[10,11] are still adequate for the purposes of the present section and they are quoted next for self-
sufficiency. It is recalled that R = ∞ and, therefore, φ = 0 in the flat-plate case considered in this section
(Fig. 1). Moreover, replacement of the parameters s and Ls with y and Ly, respectively, will conveniently
reflect the fact that a Cartesian rather than a curvilinear co-ordinate-system description is employed in
what follows.

Assume that, in general, the plate is made of some transversely inhomogeneous, linearly elastic aniso-
tropic material; the laminated composite plate is thus considered as a particular case by assuming through-
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thickness piece-wise constant inhomogeneity. Development of G6DOFPT begins with the displacement field
approximation:

U (x, y, z) = u0 (x, y)− z w0,x(x, y)+ ϕ1(z)u1(x, y),
V (x, y, z) = v0 (x, y)− z w0,y(x, y)+ ϕ2(z) v1(x, y),
W(x, y, z) = w0(x, y)+ ψ(z)w1(x, y),

(6)

where u0, v0 and w0 represent the unknown displacements of the plate middle plane. These and u1, v1
and w1, which represent the unknown values of the transverse strains on the plate middle plane, are the six
main unknowns (degrees of freedom) of the theory. The functions ϕ1(z), ϕ2(z) and ψ(z) are assumed to be
given functions of the transverse co-ordinate parameter that can dictate the shape of transverse shear and
normal strains. The latter may be chosen in any reasonable manner, consistent with the particular problem
considered, but, at this stage, no particular forms will be assigned to these functions.

By applying the kinematic relations of three-dimensional elasticity to the displacement approximation,
one obtains the following approximate strain field:

εx = ec
x + z kc

x + ϕ1(z) ka
x, γxz = ϕ′

1(z) ea
xz + ψ(z) ka

xz,
εy = ec

y + z kc
y + ϕ2(z) ka

y, γyz = ϕ′
2(z) ea

yz + ψ(z) ka
yz,

εz = ψ ′(z) ea
z, γxy = ec

xy + z kc
xy + ϕ1(z) ka

xy + ϕ2(z) ka
yx,

(7)

where a prime denotes ordinary differentiation with respect to z, and

ec
x = u0,x,

ec
y = v0,y,

ec
xy = u0,y + v0,x,

kc
x = −w0,xx,

kc
y = −w0,yy,

kc
xy = −2w0,xy,

ea
z = w1,

ea
xz = u1,

ea
yz = v1,

ka
x = u1,x,

ka
y = v1,y,

ka
xy = u1,y,

ka
yx = v1,x,

ka
xz = w1,x,

ka
yz = w1,y.

(8)

On the basis of strain energy and variational considerations [9–11], the force and moment resultants of the
theory are defined as follows:
(

Nc
x, Nc

y, Nc
xy

)

=
∫ h/2

−h/2
(σx, σy, τxy) dz,

(

Mc
x, Mc

y, Mc
xy

)

=
∫ h/2

−h/2
(σx, σy, τxy) z dz;

(

Na
z , Qa

x, Qa
y

)

=
∫ h/2

−h/2

(

σz ψ
′(z), τxz ϕ

′
1(z), τyz ϕ

′
2(z)

)

dz,

(

Ma
x, Ma

y, Ma
xy, Ma

yx

)

=
∫ h/2

−h/2

(

σx ϕ1(z), σy ϕ2(z), τxy ϕ1(z), τxy ϕ2(z)
)

dz,

(

Pa
x, Pa

y

)

=
∫ h/2

−h/2

(

τxz ψ(z), τyzψ(z)
)

dz. (9)

Here, quantities denoted with a superscript (c) are those met in CPT, while resultants denoted with a
superscript (a) are predominantly associated with stress responses due to transverse shear and transverse
normal deformation.

The six equations of equilibrium of the theory are obtained either variationally or with appropriate
integration of the equilibrium equations (2) of three-dimensional elasticity through the plate thickness
and, for the class of stationary thermo-elasticity problems considered, are as follows:

Nc
x,x + Nc

xy,y = 0, Nc
xy,x + Nc

y,y = 0, Mc
x,xx + 2Mc

xy,xy + Mc
y,yy = q(x, y),

Ma
x,x + Ma

xy,y − Qa
x = 0, Ma

yx,x + Ma
y,y − Qa

y = 0, Pa
x,x + Pa

y,y − Na
z = ψ(h/2) q(x, y), (10)
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Fig. 2 Two-layered
laminated beam geometry
and coordinate system
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where, in accordance with (1), q(x, y) represents the form of some mechanical pressure loading which is
possibly applied on the plate lateral planes.

Appropriate, 2D constitutive equations are obtained by inserting (3) and (4) into the definitions (9)
of force and moment resultants and, then, by performing the denoted through-thickness integrations.
These are similar in form to those presented in [10,11] and for the sake of brevity are not presented here.
Due to the assumed through-thickness inhomogeneity, they contain a number of additional coupling and
bending rigidities that complement their conventional counterparts met in the laminated-plate version of
the CPT. Due, however, to the appearance in (2) of the absolute temperature field, T, they further contain
a certain number of thermal-expansion rigidities [15], whose form and nature will become evident in the
particular example application employed in the next section. Upon inserting those constitutive equations
into (10), the latter set of six simultaneous PDEs is finally expressed in terms of the six main unknowns,
u0, v0, w0 u1, v1, and w1 of the G6DOFPT.

4 Application: stationary thermo-elastic stress analysis of infinite strips

Consider the particular case of a flat plate of infinite extent in the y direction (Ly = ∞) and subjected
to some kind of thermal and, possibly, mechanical lateral loading that are independent of both time and
the y co-ordinate parameter. All plate cross-sections normal to the y-axis are then subjected to the same
deformation pattern. Alternatively, each one of these cross-sections may be regarded as a prismatic beam
having unit width, constant thickness h and axial length Lx ≡ L (Fig. 2) and being elastically deformed in
the xz-plane under the action of the considered time-independent thermal loading. The equations of the
G6DOFPT presented in the preceding section are thus considerably simplified, due to the drop of all partial
derivatives with respect to y. Hence, that simpler version of G6DOFPT may alternatively be considered as a
generalised four-degree-of-freedom beam theory (G4DOFBT) that makes use of two shape functions only,
namely ϕ1 ≡ ϕ and ψ (ϕ2 = 0).

The formulation outlined in the preceding section leads therefore to four equations of stationary thermo-
elastic equilibrium which may be finally expressed in terms of the four main unknown functions (degrees
of freedom) involved as follows:

Ac
11u0,xx − Ba

11w0,xxx + Ba
11u1,xx + Bb

13w1,x = ET
1 ,

Bc
11u0,xxx − Dc

11w0,xxxx + Da
11u1,xxx + Db

13w1,xx = −q(x)+ ET
2 ,

(11)
Ba

11u0,xx − Da
11w0,xxx + Daa

11u1,xx − Aaa
55u1 + (Dab

13 − Aab
55)w1,x = ET

3 ,

−Bb
13u0,x + Db

13w0,xx − (Dab
13 − Aab

55)u1,x + Abb
55 w1,xx − Dbb

33 w1 = ψ(hN+1)q(x)+ ET
4 ,

with the appearing mechanical and thermal expansion rigidities given according to,

(

Ac
11, Bc

11, Dc
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11, Da
11, Daa

11

) =
∫ h/2

−h/2
C(r)

11

(

1, z, z2,ϕ, zϕ,ϕ2
)

dz,

(
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13, Db

13, Dab
13

)

=
∫ h/2

−h/2
C(r)

13

(

ψ ′, zψ ′,ϕψ ′) dz,
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(

Aaa
55, Aab

55, Abb
55

)

=
∫ h/2

−h/2
C(r)

55

((

ϕ′)2 ,ϕ′ψ ,ψ2
)

dz, Dbb
33 =

∫ h/2

−h/2
C(r)

33

(

ψ ′)2 dz,

ET
1 =

∫ h/2

−h/2
(α(r)x C(r)

11 + α(r)z C(r)
13 ) (�T),x dz, ET

2 =
∫ h/2

−h/2
(α(r)x C(r)

11 + α(r)z C(r)
13 ) (�T),xx z dz,

ET
3 = −

∫ h/2

−h/2
(α(r)x C(r)

13 + α(r)z C(r)
33 ) �T ψ ′dz, ET

4 = −
∫ h/2

−h/2
(α(r)x C(r)

13 + α(r)z C(r)
33 ) �T ψ ′dz. (12)

Here, a superscript T identifies rigidities that are mainly associated with thermal expansion, while
ψ(hN+1)q(x) is the contribution related to the aforementioned, possibly applied lateral mechanical loa-
ding. As already mentioned, the appearing thermal-gradient field �T should satisfy the heat-conduction
equation.

Equations (11) form a tenth-order set of four simultaneous, inhomogeneous ordinary differential equa-
tions, thus requiring specification of five boundary conditions at each of the two strip edges (or beam ends).
Explicit forms of all relevant sets of variationally consistent boundary conditions, applicable to the edges
x = 0, L, may be found in [10,12]. For later use the following two sets of boundary conditions are only
quoted here:

simple support: Nc
x = w = Mc

x = Ma
x = w1 = 0, (13)

clamped edge: u0 = w0 = w0,x = u1 = w1 = 0. (14)

Upon assuming, however, that the elastic moduli and the coefficients of linear thermal expansion do not
depend on x, one may determine the general solution of (11) analytically, provided that the appropriate
form of �T is also specified analytically and, hence, allows for the non-zero right-hand sides of (11) to be
expressed in terms of elementary mathematical functions.

In the absence of lateral mechanical loading (q(x) = 0) and for the particular case of a non-uniform
temperature field of the form:

�T(x, z) = (T0 + T1z) sin(pmx), pm = mπ/L, (m = 1, 2, . . .) (15)

the general solution of the set of equations (12) is given in the Appendix. Expression (15) may be considered
as a sine-Fourier-series harmonic of any relevant temperature field that satisfies the heat-conduction
equation and, here, it is employed in connection with the particular example application considered
later in Sect. 6. It should be emphasised that the general solution presented in the Appendix holds true
regardless of the particular choice of the shape functions ϕ(z) and ψ(z). The simplest possible choices for
these functions are ψ(z) = 0 and ϕ(z) = z or ϕ(z) = z(1 − 4z2/3h2), resulting in solutions equivalent to
those obtained with the use of the Timoshenko [33] or the Bickford [34] beam theory, respectively. The
most accurate set of these functions, determined instead in the next section, furnishes the present beam
theory with the ability to provide identical results to those obtained by solving exactly the equations of
anisotropic plane-strain elasticity for simply supported end boundaries.

5 Determination of a most accurate set of shape functions

For the class of strip problems introduced in the preceding section, a most accurate set of shape functions
ϕ (z) and ψ (z) can be determined by making use of the plane-strain version of elasticity equilibrium
equations, namely,

σx,x + τxz,z = 0, τxz,x + σz,z = 0. (16)

The plane-strain counterpart of the displacement expansion (6) is next used in the constitutive equations (3)
which are introduced into Eq. 16. The following displacement pattern of a simply supported strip (or beam):

u0 = A0 cos pmx, u1 = B0 cos pmx,
w0 = C0 sin pmx, w1 = D0 sin pmx,

(17)
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converts the latter equations into two second-order simultaneous ODEs for the two unknown functions
ϕ (z) and ψ (z) (see, for instance, [10,12,15] for further details).

The general solution of the latter set of ODEs may be expressed as follows [15]:

{

B0ϕ (z)
D0ψ (z)

}

=
{


(z)
�(z)

}

+
{

pm

0

}

C0z −
{

A0
C0

}

+
{

f (r)1
f (r)2

}

, (18)

where

f (r)1 = −(α(r)x C(r)
11 + α(r)z C(r)

13 ) (T0 + T1z)/(pmC(r)
11 ),

f (r)2 =
[

(C(r)
13 + C(r)

55 )(α
(r)
x C(r)

11 + α(r)z C(r)
13 )− C(r)

11 (α
(r)
x C(r)

13 + α(r)z C(r)
33 )

]

T1/(p
2
mC(r)

11 C(r)
55 ), (19)

and the superscript (r), denoting the rth layer of the laminate considered, suggests that elastic moduli
and coefficients of linear thermal expansion may differ from layer to layer. Moreover, 
(z) and �(z) in
the right-hand side of (18) represent the complementary solution of the aforementioned 4th-order set of
ordinary differential equations. In the notation of the present paper, these functions are identical to their
exact elasticity-solution counterparts determined in Sect. 2; they represent the exact, plane-strain-type
thermo-elasticity solution of the strip problem proposed in the preceding section (see also [15,35]). The
constants A0, B0, C0 and D0, also appearing in (17), may finally be determined by requiring of ϕ (z) and
ψ(z) to satisfy the constraints,

ϕ(0) = ψ(0) = 0,
dϕ
dz

∣
∣
∣
z=0

= dψ
dz

∣
∣
∣
z=0

= 1, (20)

so that u0 and w0 represent displacements while u1 and w1 represent transverse strains that act on the
strip middle plane (see also Sect. 3 and, for more details, [10,12,15]). As has already been mentioned in
Sect. 3, although these functions may look analytically complicated, particularly if compared with their
relevant simplest possible form employed in [33,34], they can easily be stored in a computer’s memory
and, hence, inserted in (12), where the denoted integrations are usually performed numerically.

It is worth noting in this context that, unlike their aforementioned simple counterparts [33,34] 
 and
� are both exponential functions of the transverse co-ordinate, z, with the exponents dependent on the
material and the geometrical properties of the strip considered. Under these considerations, the most
important feature of the merging of these shape functions with the “plane-strain”-type version of the 2D
thermo-elastic plane model developed in Sect. 3 is that, for simply supported laminates, it yields identical
displacement, strain and stress distributions with the corresponding, exact “plane-strain”-type thermo-
elasticity solution [35]. It is then reasonable to expect that, for other sets of end conditions, solutions and
therefore detailed response thermo-elastic characteristics of the strip are accurate, at least away of the
laminate ends.

Nevertheless, a predictor–corrector method has also been employed for validation of the numerical
results obtained for boundary conditions other than simply supported ones. Accordingly, the approximate
bending stress initially predicted with the outlined approach is inserted into the elasticity equations of
equilibrium which, in a corrector phase, are integrated in the z-direction and, if necessary, provide improved
transverse-stress distributions. In all of the pure mechanical-loading applications considered previously
[14,15,36,37], a very close agreement was generally sought and observed between corresponding inter-
laminar stress distributions obtained with the application of the predictor and corrector phases of the
method. Such an observation is always regarded as clear evidence that, for different than simply supported
boundaries, the outlined method predicts very accurate stress distributions, even without the use of the
outlined corrector phase.
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6 Numerical results and discussion

In the following example, a clamped–clamped, two-layered anti-symmetric cross-ply laminated (00/900)

beam is considered, with fibres in the bottom layer aligned along the x-axis. The beam thickness is determi-
ned by the ratio L/h = 10. It is assumed that the thermal deformation of the beam is due to a non-uniform
temperature field (15). The orthotropic material considered has the following elastic properties:

EL/ET = 25, GTT/ET = 0.5, νLT = 0.5, νTT = 0.25, (21)

and the coefficients of thermal expansion are such that, αL/αT = 0.1 and 1.0 for the top and bottom layers,
respectively, with the subscripts L and T denoting properties associated with the longitudinal and the
transverse fibre direction, respectively.

In order to distinguish qualitatively between stress distributions induced by the uniform, T0 sin(mπ/L),
and the linear along the z, T1z sin(mπ/L), part of the temperature gradient, corresponding numerical
results are depicted separately. All the numerical results illustrated in what follows are presented by means
of the following nondimensional parameters:

(a) For the case of through-thickness uniform temperature variation (T1 = 0),

U = U
αLT0L

, W = W
αLT0L

, σx = σx

ETαLT0
, σz = σz

ETαLT0
, τxz = τxz

ETαLT0
, (22)

(b) For the case of through-thickness linear temperature variation with T0 = 0,

U = 10 U
αLT1L2 , W = 10 W

αLT1L2 , σx = 10 σx

ETαLT1L
, σz = 10 σz

ETαLT1L
, τxz = 10 τxz

ETαLT1L
. (23)

Also, due to the geometrical symmetry of the problem considered, all four figures depict results for the
left-half of the beam only (0 ≤ x/L ≤ 0.5).

Accordingly, for the aforementioned case (a), Figs. 3 and 4 illustrate the through-thickness normali-
sed bending-stress distributions obtained in the predictor phase of the method and the corresponding
transverse-shear-stress distribution predicted with the application of the corrector phase, respectively.
Figures 5 and 6 illustrate the corresponding stress distributions related to case (b). More detailed numeri-
cal results that are not presented here have shown that the through-thickness distributions of transverse
shear stresses obtained with the application of the predictor phase of the method are still continuous at
the layer interface, although this is mainly due to the specific lay-up considered. Most importantly, with the
exception of a narrow band in the vicinity of the clamped ends, the relative difference of the shear-stress va-
lues obtained by means of the predictor and the corrector phases employed was always particularly small. It
is worth mentioning in this connection that this difference never exceeded 1% in the range 0.2 ≤ x/L ≤ 0.8,
for either uniform or linearly varying temperature field. This remarkable observation verifies further
the accuracy of the present model in predicting accurate shear-stress distributions even directly, namely
without the use of the corrector phase. Some, slightly different, further numerical results are presented in
[38] while additional example applications that confirm the outlined trends and conclusions are discussed
in [15].

7 Closure

The extension of the relevant purely mechanical theory [11,12] outlined in this paper takes advantage
of solutions available in three-dimensional thermo-elasticity theory for simply supported laminated com-
ponents (e.g. [22,28,35]) and, hence, enables the resulting two-dimensional ESL thermo-elastic model to
operate on the basis of a small number of unknown degrees of freedom. It is shown in this connection
that, within the framework of uncoupled thermo-elasticity theory, and provided that the thermal loading
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Fig. 3 Normalised
in-plane bending-stress
distributions in predictor
phase induced by
T0 sin(p1x)
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Fig. 4 Normalised
transverse shear-stress
distributions in corrector
phase induced by
T0 sin(p1x)
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Fig. 5 Normalised
in-plane bending-stress
distributions in predictor
phase induced by
T1 z sin(p1x)
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Fig. 6 Normalised
transverse shear-stress
distributions in corrector
phase induced by
T1 z sin(p1x)
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conforms to the requirements of the heat conduction equation, the number of the degrees of freedom
involved (six) is kept as low as that employed in the original, purely mechanical counterpart [11,12] of the
presented ESL theory. Hence, in possible applications that require use of coupled thermo-elasticity theory,
no more than a small additional number of degrees of freedom may need to be incorporated into the model.
These should account for an approximate through-thickness representation of the temperature field, T,
which should be similar in form with the representation employed in (6) for the associated displacement
components.

From an applied-mechanics viewpoint, the challenge faced by the presented, advanced ESL thermo-
elastic model is related with the extent to which a possible thermo-elasticity generalisation of Saint Venant’s
principle accommodates accurately enough the prediction of thermo-elastic stresses away from the edges of
a structural component which is not simply supported. The implemented predictor–corrector method (see
also [10,15,36,37]) can still be found appealing and useful in this connection. Nevertheless, application of a
relevant finite-element formulation [16] that was found particularly successful in cases of purely mechanical
response of laminated composite components can also be extended further to account for relevant thermo-
elasticity effects. Such a finite-element code is expected to be very efficient in cases involving possible sets
of edge boundary conditions that could cause unexpected inaccuracy in the initial prediction of detailed,
thermo-mechanical response characteristics of the composite component involved.

Relevant challenges include the possibility of extending successfully the method’s applicability and use-
fulness in associated research areas of structural mechanics, such as eigenvibration analysis, linear stability
and piezoelectric behaviour of composite and functionally graded structures and structural assemblies. In
this connection, structural components with more complicated material, as well as geometrical configura-
tion, should also be considered while the method’s success should also be assessed in structural-analysis
problems influenced by the presence of geometrical nonlinearity. Consideration of these, as well as other
possible challenges, should be dealt with a welcome and positive attitude.

It is worth mentioning in this connection that micromechanics considerations and relevant effects
that give rise to asymmetric theory of elasticity are expected to influence developments towards the
generation of a new class of mathematical models for thin-walled structures. Resistance of fibres to bending
and its consequences [39] may be referred to as an example that supports this expectation. In some
detail, the relevant finite-deformations study presented in [39] has developed, as a particular case, a
version of asymmetric linear elasticity theory that takes into consideration the effects of a fibre’s bending
stiffness. Though currently available in a form appropriate to the symmetries of transverse isotropy only,
the latter version of three-dimensional elasticity theory can serve as a means for the incorporation of
the mentioned micromechanics effects into accurate modelling of two- or one-dimensional thin-walled
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structures. Dealing, in particular, with the advanced elastic-beam modelling of the type outlined in the
present paper, reference [39] has already provided a set of higher-order PDEs, the solution of which
for simply supported components will yield an appropriate set of shape functions analogous to those
described in (18) with the use of symmetric plane-strain elasticity. In the spirit outlined at the beginning
of the Introduction, these challenges place the work and research output outlined in this paper no further
than a point of possible reference for future developments in the subject of two-dimensional mathematical
modelling of thin-walled structures and structural components.
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Appendix

The general solution of the system of ordinary differential equations (11) can be written in the following
form, which is independent of the choice of the shape functions:

u0 = 1
F1

{ 4
∑

i=1

1
µi

[

Aaa
55F1F5 + µ2

i (F3G2 − F5G1)
]

Kieµix + Q3K5x − Q2

(
1
2

K6x2 + K7x
)

+ K8

}

+A cos pmx,

w0 = 1
F1

{ 4
∑

i=1

1
µ2

i

[

Aaa
55F1F4 + µ2

i (F2G2 − F4G1)
]

Kieµix + 1
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Q2K5x2 − Q1
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1
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K7x2
)

+ K9x

+K10
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+ C sin pmx,

u1 =
4

∑

i=1

µiG2Kieµix + F2G4 − F4G2

Aaa
55F1G4

K6 + B cos pmx,

w1 =
4

∑

i=1

(

Aaa
55F1 − µ2

i G1
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Kieµix + F5
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K5 − F4

G4
(K6x + K7)+ D sin pmx (A1)

Here,
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11Dc
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11,
F2 = Ac

11Da
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11Ba
11,

F3 = Bc
11Da

11 − Dc
11Ba

11,
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11Bb

13,

F5 = Bc
11Db
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G1 = Ba
11F3 − Da

11F2 + Daa
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(

Dab
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13F3 − Db

13F2 +
(

Dab
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,
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11 + F4F5

G4
,
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11 + F2

5
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(A2)

while, Ki (i = 1, 2, . . . , 10) are 10 arbitrary constants of integration and µi are the four roots of the
following quartic algebraic equation:

Abb
55 F1G1µ

4 −
(

G1G4 − G2G3 + Abb
55 Aaa

55F2
1

)

µ2 + Aaa
55F1G4 = 0. (A3)

The trigonometric terms appearing in the right-hand sides of (A1) represent the particular integral
of the differential equations (11) and their coefficients are therefore determined by standard methods
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of differential calculus. As far as the present applications are concerned (q = 0), these are accordingly
determined by inverting the following set of simultaneous algebraic equations:
⎡
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where,

HT
1 =

∫ h/2

−h/2
pm(α

(r)
x C(r)

11 + α(r)z C(r)
13 )(T0 + T1z) dz, HT

2 = −
∫ h/2

−h/2
p2

m(α
(r)
x C(r)

11 + α(r)z C(r)
13 )(T0 + T1z) z dz,

HT
3 =

∫ h/2

−h/2
pm(α

(r)
x C(r)

11 + αzC(r)
13 )(T0 + T1z)ϕdz, HT

4 = −
∫ h/2

−h/2
(α(r)x C(r)

13 + α(r)z C(r)
33 )(T0 + T1z) ψ ,dz.

(A5)

and the superscript (r) denotes the layer number.
The 10 arbitrary constants of integration Ki (i = 1, 2, . . . , 10) appearing in (A1) are free to be determined

by means of an appropriate set of boundary conditions imposed at the edges x = 0 and x = L of the
beam (e.g. (14)). This is achieved, by connecting expressions (A1) with the chosen set of edge boundary
conditions and then solving the resulting 10×10 system of linear algebraic equations. In the particular case
of a beam having both of its edges simply supported, the latter system returns Ki = 0 (i = 1, 2, . . . , 10), and
expressions (A1) are naturally reduced to the appropriate trigonometric form (19) that satisfies exactly
the simple support boundary conditions at both ends, x = 0, L.
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